AI Experiment Client Calls
sigopt.create_experiment(...)
sigopt.create_experiment(...)
Creates a new AI Experiment.
Name | Type | Required? | Description |
---|---|---|---|
|
| Yes | A user-specified name for this AI Experiment. |
| Yes | A list of Parameter objects. | |
|
| No | |
|
| No | |
|
| No | |
|
| Yes | A list of Metric definitions to be optimized or stored for analysis. If the array is of length one, the standard optimization problem is conducted. This array can have no more than 2 optimized entries and no more than 50 entries in total. |
|
| No | The number of (diverse) solutions SigOpt will search for. This feature is only available for special plans, and does not need to be set unless the desired number of solutions is greater than 1. A budget is required if the number of solutions is greater than 1. No categorical variables are allowed in multiple solution experiments. |
|
| No | The number of Runs you plan to create for this AI Experiment. This is required when the length of metrics is greater than 1, and optional for a single metric experiment. Deviating from this value, especially by failing to reach it, may result in suboptimal performance for your experiment. |
|
| No | The number of simultaneous Runs you plan to maintain during this experiment. The default value for this is 1, i.e., a sequential experiment. The maximum value for this is dependent on your plan. This field is optional, but setting it correctly may improve performance. |
|
| No | A type for this experiment. AI Experiments can span 3 types: |
Example for creating an AI Experiment:
Once you’ve created an AI Experiment, you are able to loop through an Experiment in two ways:
sigopt.get_experiment(experiment_id)
sigopt.get_experiment(experiment_id)
Retrieves an existing AI Experiment.
Name | Type | Required? | Description |
---|---|---|---|
|
| Yes | Returns a SigOpt AI Experiment object specified by the provided |
experiment.create_run()
experiment.create_run()
Creates a new Run in the AI Experiment. Returns a RunContext
object to use for tracking Run attributes.
experiment.loop()
experiment.loop()
Start an AI Experiment loop. Returns an iterator of RunContext
objects, used for tracking attributes of each Run in the AI Experiment. The iterator will terminate when the AI Experiment has consumed its entire budget.
experiment.is_finished()
experiment.is_finished()
Check if the AI Experiment has consumed its entire budget.
experiment.refresh()
experiment.refresh()
Refresh the AI Experiment attributes.
experiment.get_runs()
experiment.get_runs()
Returns an iterator of all the TrainingRuns for an AI Experiment. Method applied to an instance of an AI Experiment object.
experiment.get_best_runs()
experiment.get_best_runs()
Returns an iterator of the best TrainingRuns for an AI Experiment. Method applied to an instance of an AI Experiment object.
experiment.update()
experiment.update()
Update experiment parameters during execution.
Name | Type | Required? | Description |
---|---|---|---|
| Yes | A list of Parameter objects |
Example for updating parameter bounds within an AI Experiment
experiment.archive()
experiment.archive()
Archives the AI Experiment. All associated Runs will not be archived and can be found on the Project Runs page. Method applied to an instance of an AI Experiment object.
Last updated