In this section, we list the commonly used API objects and endpoints. For the complete core module documentation, please refer to the Endpoints and Objects pages.
Experiment
Object
Experiment - An experiment represents an objective that SigOpt is optimizing, the relevant parameters, and the underlying data.
Endpoints
Experiment Create - Creates a new Experiment.
Experiment Update - Updates an existing Experiment
Example: Experiment Create
Python Bash Java R MATLAB
Copy conn = Connection (client_token = "USER_TOKEN" )
experiment = conn . experiments (). create (
name = "first experiment" ,
parameters = [
dict (
name = "parameter_1" ,
bounds = dict (
min = 10 ,
max = 100
),
type = "int"
),
dict (
name = "parameter_2" ,
bounds = dict (
min = 0.1 ,
max = 1.4 ,
),
type = "double"
)
],
metrics = [
dict (
name = "metric_1" ,
objective = "maximize" ,
strategy = "optimize"
)
],
observation_budget = 30 ,
)
Copy EXPERIMENT = curl -s -X POST https://api.sigopt.com/v1/experiments -u "$SIGOPT_API_TOKEN" : \
-H "Content-Type: application/json" -d "` cat experiment_meta.json `"
JSON file defining the Experiment:
Copy {
"name" : "first experiment" ,
"parameters" : [
{
"name" : "parameter_1" ,
"bounds" : {
"min" : 10 ,
"max" : 100
} ,
"type" : "int"
} ,
{
"name" : "parameter_2" ,
"bounds" : {
"min" : 0.1 ,
"max" : 1.4
} ,
"type" : "double"
}
] ,
"metrics" : [
{
"name" : "metric_1" ,
"objective" : "maximize" ,
"strategy" : "optimize"
}
] ,
"observation_budget" : 30
}
Copy import com . sigopt . SigOpt ;
import com . sigopt . exception . SigoptException ;
import com . sigopt . model . * ;
import java . util . Arrays ;
public class YourSigoptExperiment {
public static Experiment createExperiment () throws SigoptException {
Experiment experiment = Experiment . create ()
. data (
new Experiment . Builder ()
. name ( "first experiment" )
. parameters ( java . util . Arrays . asList (
new Parameter . Builder ()
. name ( "parameter_1" )
. bounds ( new Bounds . Builder ()
. min ( 10 )
. max ( 100 )
. build ())
. type ( "int" )
. build () ,
new Parameter . Builder ()
. name ( "parameter_2" )
. bounds ( new Bounds . Builder ()
. min ( 0.1 )
. max ( 1.4 )
. build ())
. type ( "double" )
. build ()
))
. metrics ( java . util . Arrays . asList (
new Metric . Builder ()
. name ( "metric_1" )
. objective ( "maximize" )
. strategy ( "optimize" )
. build ()
))
. observationBudget ( 30 )
. type ( "offline" )
. build ()
)
. call ();
return experiment;
}
Copy install.packages ( "devtools" , repos = "http://cran.us.r-project.org" )
library (devtools)
install_github( "sigopt/SigOptR" )
library (SigOptR)
Sys.setenv (SIGOPT_API_TOKEN = "USER_TOKEN" )
experiment <- create_experiment( list (
name = "first experiment" ,
# Define which parameters you would like to tune
parameters =list (
list (name = "parameter_1" , type = "int" , bounds =list (min = 10 , max = 100 )),
list (name = "parameter_2" , type = "double" , bounds =list (min = 0.1 , max = 1.4 ))
),
metrics =list (
list (name = "metric_1" , objective = "maximize" , strategy = "optimize" )
),
observation_budget = 30 ,
) )
print ( paste (
"Created experiment: https://app.sigopt.com/experiment" ,
experiment $ id,
sep = "/"
))
Copy import sigopt.Connection
conn = Connection( "USER_TOKEN" );
% Create your experiment
experiment = conn.experiments().create(struct( ...
'name' , 'first experiment' , ...
'parameters' , [ ...
struct( ...
'name' , 'parameter_1' , ...
'type' , 'int' , ...
'bounds' , struct( ...
'min' , 10 , ...
'max' , 100 ...
) ...
), ...
struct( ...
'name' , 'parameter_2' , ...
'type' , 'double' , ...
'bounds' , struct( ...
'min' , 0.1 , ...
'max' , 1.4 ...
) ...
) ...
], ...
'metrics' : [ ...
struct( ...
'name' , 'metric_1' , ...
'objective' , 'maximize' , ...
'strategy' , 'optimize' ...
), ...
], ...
'observation_budget' , 30 ...
))
experiment_id = experiment.id;
Suggestion
Object
Suggestion - A representation of the parameters that SigOpt has suggested. Contains a list of parameters and their suggested values.
Endpoints
Suggestion Create - Creates a Suggestion that SigOpt recommends in order to optimize your metric.
Suggestion List - Retrieves a Pagination of all Suggestion objects for this experiment.
Suggestion Delete - Deletes a Suggestion
Example: Suggestion Create
Python Bash Java R MATLAB
Copy suggestion = conn . experiments (EXPERIMENT_ID). suggestions (). create ()
Copy SUGGESTION = ` curl -s -X POST https://api.sigopt.com/v1/experiments/EXPERIMENT_ID/suggestions -u "$SIGOPT_API_TOKEN" : `
Copy Suggestion suggestion = new Experiment(EXPERIMENT_ID) . suggestions () . create () . call ();
Copy suggestion <- create_suggestion( experiment $ id )
Copy suggestion = conn.experiments(experiment_id).suggestions().create()
Observation
Object
Observation - The observed data from a single trial in your experiment.
Endpoints
Observation Create - Create an Observation.
Observation List - Retrieves a Pagination of all Observation objects for this experiment.
Observation Delete - Deletes an Observation.
Example: Observation Create
Python Bash Java R MATLAB
Copy observation = conn . experiments (EXPERIMENT_ID). observations (). create (
suggestion = SUGGESTION_ID,
values = [{ "name" : "metric_1" , "value" : 3.14 }],
)
Copy OBSERVATION = ` curl -s -X POST https://api.sigopt.com/v1/experiments/EXPERIMENT_ID/observations -u "$SIGOPT_API_TOKEN" : \
-H 'Content-Type: application/json' \
-d "{\"suggestion\":\"SUGGESTION_ID\",\"values\":[{\"name\":\"metric_1\",\"value\":3.14}]}"`
Copy Observation observation = new Experiment(EXPERIMENT_ID) . observations () . create ()
. data (
new Observation . Builder ()
. suggestion ( "SUGGESTION_ID" )
. values ( java . util . Arrays . asList (
new Value . Builder ()
. name ( "metric_1" )
. value ( 3.14 )
. build ()
))
. build ()
)
. call ();
Copy create_observation( experiment $ id, list (
suggestion = suggestion $ id,
values =list ( list (name = "metric_1" , value = 3.14 ))
) )
Copy observation = conn.experiments(experiment_id).observations().create(struct( ...
'suggestion' , suggestion.id, ...
'values' , [
struct( ...
'name' , 'metric_1' , ...
'value' , 3.14 ...
)
]
))
Last updated 8 months ago