LogoLogo
sigopt.comLog In / Sign Up
  • Welcome to SigOpt!
    • SigOpt API Modules
    • Main Concepts
      • Define and Set Up Parameter Space
      • Define and Set Up Metric Space
      • Alternative Experiment Types
  • Advanced Experimentation
    • Multimetric Optimization
    • Metric Thresholds
    • Metric Constraints
    • Metric Failure
    • All Constraints Experiment
    • Multisolution
    • Parallelism
    • Parameter Constraints
    • Prior Beliefs
    • Multitask Experiments
  • Core Module API References
    • Installation and Setup
    • Quick Start
    • API Topics
      • API Tokens and Authentication
      • API Errors
      • Manage Open Suggestions
      • Metadata
      • Pagination
    • API Endpoints
      • Client Detail
      • Experiment Best Assignments
      • Experiment Create
      • Experiment Delete
      • Experiment Detail
      • Experiment Metric Importances
      • Experiment Stopping Criteria
      • Experiment Update
      • Observation Create
      • Observation Batch Create
      • Observation Delete
      • Observation Detail
      • Observation List Delete
      • Observation List
      • Observation Update
      • Queued Suggestion Create
      • Queued Suggestion Delete
      • Queued Suggestion Detail
      • Queued Suggestion List
      • Suggestion Create
      • Suggestion Delete
      • Suggestion Detail
      • Suggestion List Delete
      • Suggestion List
      • Experiment Token Create
      • Organization Detail
      • Suggestion Update
    • API Objects
      • Assignments Object
      • Best Assignments Object
      • Bounds Object
      • Categorical Value Object
      • Client Object
      • Conditional Object
      • Conditions Object
      • Constraint Term Object
      • Experiment Object
      • Metadata Object
      • Metric Object
      • Metric Evaluation Object
      • Metric Importances Object
      • Observation Object
      • Organization Object
      • Pagination Object
      • Parameter Object
      • Parameter Constraint Object
      • Plan Object
      • Plan Period Object
      • Plan Rules Object
      • Prior Object
      • Progress Object
      • Queued Suggestion Object
      • Stopping Criteria Object
      • Suggestion Object
      • Token Object
  • AI MODULE API REFERENCES
    • Installation and Setup
    • Quick Start Tutorials
      • Run Tutorial
      • Project Tutorial
      • AI Experiment and Optimization Tutorial
    • Tracking Your Training Runs
      • Set Up for Example Code
      • Record SigOpt Runs in Jupyter
      • Record SigOpt Runs with Python IDE and SigOpt CLI
      • Record SigOpt Runs with Python IDE
      • View and Analyze the Recorded SigOpt Run
      • Enable Optimization for your SigOpt Runs
    • AI Experiments
      • AI Experiment Set Up
    • Bring Your Own Optimizer
    • XGBoost Integration
      • Installation
      • Tracking XGBoost Training
      • Tuning XGBoost Models
    • HyperOpt
      • Installation
      • User Case
      • API
    • SigOpt Orchestrate
      • Install SigOpt Orchestrate
      • Orchestrate a Tracked Training Run
      • Orchestrate an AI Experiment
      • AWS Cluster Create and Manage
      • SigOpt: Bring Your Own Cluster
      • Dockerfile: Define Your Environment
      • Debugging
      • CLI Reference
    • API Reference
      • Manually create a SigOpt Run
      • Tracking a Run
      • AI Experiment Client Calls
      • Project Client Calls
      • Objects
        • Training Run Object
        • AI Experiment Object
        • Parameter Object
        • Metric Object
      • SigOpt CLI Commands
      • Orchestrate CLI Commands
  • Support
    • Support
    • FAQ
    • Best Practices
      • Setting an experiment budget
      • Reproducibility in SigOpt
      • Uploading data as a Training Run artifact
      • Navigating multiple metrics
Powered by GitBook
On this page
  • Configuration
  • Initial Setup
  • Custom Image Registries
  • Kubeconfig File Not Found
  • Test Cluster
  • Connect to SigOpt
  1. AI MODULE API REFERENCES
  2. SigOpt Orchestrate

SigOpt: Bring Your Own Cluster

PreviousAWS Cluster Create and ManageNextDockerfile: Define Your Environment

Last updated 1 year ago

You can connect to SigOpt and run experiments using any Kubernetes cluster! If you are using Google Cloud Platform, Microsoft Azure, or bringing your own cluster on AWS, use this section to learn how to connect your existing Kubernetes cluster to SigOpt.

Configuration

SigOpt uses a file to connect to your cluster.

If you already have your kubeconfig file, you can use it to connect to SigOpt with the --kubeconfig argument:

$ sigopt cluster connect \
  --cluster-name my-cluster \
  --provider custom \
  --registry my-registry \ # example: gcr.io/[project-id]
  --kubeconfig $HOME/.kube/config

For example, if you have a Google Kubernetes Engine (GKE) cluster up and running, and have the gcloud CLI installed, you can run the following command to generate your kubeconfig:

$ gcloud container clusters get-credentials <CLUSTER-NAME> [--region <GCP-REGION>]

Initial Setup

SigOpt needs to create some extra resources before running on an existing cluster. Please run the following command after connecting to your cluster for the first time:

$ sigopt cluster install-plugins

This only needs to be done one time for each custom cluster you use.

Custom Image Registries

To override the default options with a custom image registry, provide the --registry argument when you connect to your cluster:

$ sigopt cluster connect \
  --cluster-name tiny-cluster \
  --provider custom \
  --kubeconfig /path/to/kubeconfig \
  --registry myregistrydomain:port

Kubeconfig File Not Found

Test Cluster

Test whether or not your development environment is properly setup to talk to your Kubernetes cluster:

$ kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/kubernetes ClusterIP 10.100.0.1 <none> 443/TCP 1m

If your output looks like the one above, you are ready to proceed to the next step. If your output looks significantly different, or contains an error, please contact your Kubernetes administrator to help you configure access to your cluster.

Connect to SigOpt

Use kubectl to copy the kubeconfig to a local file, and then connect to SigOpt.

$ kubectl config view >> kubeconfig

$ sigopt cluster connect \
  --cluster-name my-cluster \
  --provider custom \
  --registry my-registry \ # example: gcr.io/[project-id]
  --kubeconfig kubeconfig

Clusters with the provider custom will use as their default container registry.

For this section, you will need to install a tool for communicating with Kubernetes clusters.

kubeconfig
Docker Hub
kubectl,