Experiment Create

https://api.sigopt.com/v1/experiments

Creates a new Experiment.

Request Method: POST

Parameters

Name
Type
Required?
Description

name

string

Y

A user-specified name for this experiment.

parameters

array<Parameter>

Y

An array of Parameter objects.

conditionals

N

linear_constraints

N

metadata

N

Optional user-provided object. See Using Metadata for more information.

metrics

array<Metric>

N

An array of Metric objects to be optimized or stored for analysis. If the array is of length one, the standard optimization problem is conducted. This array can have no more than 2 optimized entries and no more than 50 entries in total.

num_solutions

int

N

The number of (diverse) solutions SigOpt will search for. This feature is only available for special plans, and does not need to be set unless the desired number of solutions is greater than 1. An observation budget is required if the number of solutions is greater than 1. No categorical variables are allowed in multiple solution experiments.

observation_budget

int

N

The number of Observations you plan to create for this experiment. This is required when the length of metrics is greater than 1, and optional for a single metric experiment. Deviating from this value, especially by failing to reach it, may result in suboptimal performance for your experiment.

parallel_bandwidth

int

N

The number of simultaneously open Suggestions you plan to maintain during this experiment. The default value for this is 1, i.e., a sequential experiment. The maximum value for this is dependent on your plan. This field is optional, but setting it correctly may improve performance.

type

string

N

A type for this experiment. Used for experimental and alpha features only.

Deprecated Parameters

These parameters should no longer be used because there are better alternatives.

Name
Type
Required?
Description

metric

N

Information about the metric that this experiment is optimizing.

Response

Experiment object.

Examples

All types of parameters, experiment types, and metrics

experiment = conn.experiments().create(
  name="Support Vector Classifier Accuracy",
  parameters=[
    dict(
      name="degree",
      bounds=dict(
        min=1,
        max=5
        ),
      type="int"
      ),
    dict(
      name="gamma",
      bounds=dict(
        min=0.001,
        max=1
        ),
      type="double"
      ),
    dict(
      name="kernel",
      categorical_values=[
        dict(
          name="rbf"
          ),
        dict(
          name="poly"
          ),
        dict(
          name="sigmoid"
          )
        ],
      type="categorical"
      )
    ],
  metrics=[
    dict(
      name="Accuracy",
      objective="maximize",
      strategy="optimize"
      )
    ],
  observation_budget=60,
  parallel_bandwidth=1,
  type="offline"
  )
Response
{
  "client": "1",
  "conditionals": [],
  "created": 1414800000,
  "development": false,
  "id": "1",
  "linear_constraints": [],
  "metadata": null,
  "metric": {
    "name": "Accuracy",
    "object": "metric",
    "objective": "maximize",
    "strategy": "optimize",
    "threshold": null
  },
  "metrics": [
    {
      "name": "Accuracy",
      "object": "metric",
      "objective": "maximize",
      "strategy": "optimize",
      "threshold": null
    }
  ],
  "name": "Support Vector Classifier Accuracy",
  "num_solutions": null,
  "object": "experiment",
  "observation_budget": 60,
  "parallel_bandwidth": null,
  "parameters": [
    {
      "bounds": {
        "max": 5,
        "min": 1,
        "object": "bounds"
      },
      "categorical_values": null,
      "conditions": {},
      "default_value": null,
      "name": "degree",
      "object": "parameter",
      "precision": null,
      "prior": null,
      "transformation": null,
      "tunable": true,
      "type": "int"
    },
    {
      "bounds": {
        "max": 1,
        "min": 0.001,
        "object": "bounds"
      },
      "categorical_values": null,
      "conditions": {},
      "default_value": null,
      "name": "gamma",
      "object": "parameter",
      "precision": null,
      "prior": null,
      "transformation": null,
      "tunable": true,
      "type": "double"
    },
    {
      "bounds": null,
      "categorical_values": [
        {
          "enum_index": 1,
          "name": "rbf",
          "object": "categorical_value"
        },
        {
          "enum_index": 2,
          "name": "poly",
          "object": "categorical_value"
        },
        {
          "enum_index": 3,
          "name": "sigmoid",
          "object": "categorical_value"
        }
      ],
      "conditions": {},
      "default_value": null,
      "name": "kernel",
      "object": "parameter",
      "precision": null,
      "prior": null,
      "transformation": null,
      "tunable": true,
      "type": "categorical"
    }
  ],
  "progress": null,
  "project": "classification-models",
  "runs_only": false,
  "state": "active",
  "type": "offline",
  "updated": 1446422400,
  "user": null
}

Two metrics

experiment = conn.experiments().create(
  name="Profit vs. Robustness",
  parameters=[
    dict(
      name="mixing speed",
      bounds=dict(
        min=0,
        max=3
        ),
      type="double"
      ),
    dict(
      name="personnel",
      bounds=dict(
        min=10,
        max=25
        ),
      type="int"
      )
    ],
  metrics=[
    dict(
      name="profit",
      objective="maximize",
      strategy="optimize"
      ),
    dict(
      name="robustness",
      objective="maximize",
      strategy="optimize"
      )
    ],
  observation_budget=120,
  parallel_bandwidth=1
  )
Response
{
  "client": "1",
  "conditionals": [],
  "created": 1414800000,
  "development": false,
  "id": "2",
  "linear_constraints": [],
  "metadata": null,
  "metric": null,
  "metrics": [
    {
      "name": "profit",
      "object": "metric",
      "objective": "maximize",
      "strategy": "optimize",
      "threshold": null
    },
    {
      "name": "robustness",
      "object": "metric",
      "objective": "maximize",
      "strategy": "optimize",
      "threshold": null
    }
  ],
  "name": "Profit vs. Robustness",
  "num_solutions": null,
  "object": "experiment",
  "observation_budget": 120,
  "parallel_bandwidth": 1,
  "parameters": [
    {
      "bounds": {
        "max": 3,
        "min": 0,
        "object": "bounds"
      },
      "categorical_values": null,
      "conditions": {},
      "default_value": null,
      "name": "mixing speed",
      "object": "parameter",
      "precision": null,
      "prior": null,
      "transformation": null,
      "tunable": true,
      "type": "double"
    },
    {
      "bounds": {
        "max": 25,
        "min": 10,
        "object": "bounds"
      },
      "categorical_values": null,
      "conditions": {},
      "default_value": null,
      "name": "personnel",
      "object": "parameter",
      "precision": null,
      "prior": null,
      "transformation": null,
      "tunable": true,
      "type": "int"
    }
  ],
  "progress": null,
  "project": "classification-models",
  "runs_only": false,
  "state": "active",
  "type": "offline",
  "updated": 1446422400,
  "user": null
}

Two solutions

experiment = conn.experiments().create(
  name="Classifier Accuracy",
  parameters=[
    dict(
      name="layer_size",
      bounds=dict(
        min=10,
        max=100
        ),
      type="int"
      ),
    dict(
      name="learning_rate",
      bounds=dict(
        min=0.001,
        max=1
        ),
      type="double"
      )
    ],
  metrics=[
    dict(
      name="Accuracy",
      objective="maximize",
      strategy="optimize"
      )
    ],
  num_solutions=2,
  observation_budget=60,
  parallel_bandwidth=1
  )
Response
{
  "client": "1",
  "conditionals": [],
  "created": 1414800000,
  "development": false,
  "id": "2",
  "linear_constraints": [],
  "metadata": null,
  "metric": {
    "name": "Accuracy",
    "object": "metric",
    "objective": "maximize",
    "strategy": "optimize",
    "threshold": null
  },
  "metrics": [
    {
      "name": "Accuracy",
      "object": "metric",
      "objective": "maximize",
      "strategy": "optimize",
      "threshold": null
    }
  ],
  "name": "Classifier Accuracy",
  "num_solutions": 2,
  "object": "experiment",
  "observation_budget": 60,
  "parallel_bandwidth": 1,
  "parameters": [
    {
      "bounds": {
        "max": 100,
        "min": 10,
        "object": "bounds"
      },
      "categorical_values": null,
      "conditions": {},
      "default_value": null,
      "name": "layer_size",
      "object": "parameter",
      "precision": null,
      "prior": null,
      "transformation": null,
      "tunable": true,
      "type": "int"
    },
    {
      "bounds": {
        "max": 1,
        "min": 0.001,
        "object": "bounds"
      },
      "categorical_values": null,
      "conditions": {},
      "default_value": null,
      "name": "learning_rate",
      "object": "parameter",
      "precision": null,
      "prior": null,
      "transformation": null,
      "tunable": true,
      "type": "double"
    }
  ],
  "progress": null,
  "project": "classification-models",
  "runs_only": false,
  "state": "active",
  "type": "offline",
  "updated": 1446422400,
  "user": null
}

Last updated