If the CLI or Jupyter Notebook integration isn't right for your use case then you might want to create Runs and AI Experiments directly with the SigOpt Python Client. To create a Run, just add the following to your code:
Copy run = sigopt.create_run()
With this Run object you can get and set parameter values and log attributes in a similar way as you would when using the CLI:
Copy run.params.learning_rate = 0.1
accuracy = train_my_model(learning_rate=run.params.learning_rate)
run.log_metric("accuracy", accuracy)
For convenience, you can use a Python context manager to end the Run automatically, including when your code raises an exception:
Copy with sigopt.create_run() as run:
run.params.learning_rate = 0.1
accuracy = train_my_model(learning_rate=sigopt.params.learning_rate)
run.log_metric("accuracy", accuracy)
With SigOpt installed and your Python environment set up, let's take a look at how to record a SigOpt Run in a Python IDE.
Copy import tensorflow as tf
import sigopt
import os
os.environ["SIGOPT_API_TOKEN"] = # SIGOPT-API-TOKEN
os.environ["SIGOPT_PROJECT"] = "run-examples"
class KerasNNModel:
def __init__(self, hidden_layer_size, activation_fn):
model = tf.keras.Sequential(
[
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(hidden_layer_size, activation=activation_fn),
tf.keras.layers.Dense(10),
]
)
self.model = model
def get_keras_nn_model(self):
return self.model
def train_model(self, train_images, train_labels, optimizer_type, metrics_list, num_epochs):
self.model.compile(
optimizer=optimizer_type,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=metrics_list,
)
self.model.fit(train_images, train_labels, epochs=num_epochs)
def evaluate_model(self, test_images, test_labels):
metrics_dict = self.model.evaluate(test_images, test_labels, verbose=2, return_dict=True)
return metrics_dict
def load_data_train_model(sigopt_run):
sigopt_run.log_dataset(name="mnist")
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()
# set model training, architecture parameters and hyperparameters
sigopt_run.params.num_epochs = 2
sigopt_run.params.hidden_layer_size = 200
sigopt_run.params.activation_fn = "relu"
# create the model
keras_nn_model = KerasNNModel(
hidden_layer_size=sigopt_run.params.hidden_layer_size, activation_fn=sigopt_run.params.activation_fn
)
sigopt_run.log_model("Keras NN Model with 1 Hidden layer")
# train the model
keras_nn_model.train_model(train_images, train_labels, "adam", ["accuracy"], sigopt_run.params.num_epochs)
sigopt_run.log_metadata("sgd optimizer", "adam")
metrics_dict = keras_nn_model.evaluate_model(test_images, test_labels)
# log performance metrics
sigopt_run.log_metric("accuracy", metrics_dict["accuracy"])
sigopt_run.log_metric("loss", metrics_dict["loss"])
if __name__ == "__main__":
with sigopt.create_run() as run:
load_data_train_model(sigopt_run=run)pyth
Copy Run started, view it on the SigOpt dashboard at https://app.sigopt.com/run/1234
Epoch 1/2
1875/1875 [==============================] - 5s 2ms/step - loss: 2.7513 - accuracy: 0.8826
Epoch 2/2
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3313 - accuracy: 0.9265
313/313 - 0s - loss: 0.2941 - accuracy: 0.9478
Run finished, view it on the SigOpt dashboard at https://app.sigopt.com/run/1234