An optimization experiment leverages SigOpt's proprietary ensemble of global optimization algorithms to learn about the relationship between parameters and metrics over the experiment lifecycle. SigOpt allows you to search for a single high performing parameter configuration or a set of high performing parameter configurations with SigOpt's Multimetric Optimization .
AI Experiments can be created either in a script with calls from a SigOpt client library or by defining the AI Experiment in a YAML file that will be passed to the SigOpt CLI.
Executing in Jupyter and Colab
See this notebook for a demonstration of how easy intelligent optimization is with SigOpt.
Executing with the SigOpt CLI and Python
Here is how to execute a SigOpt AI Experiment using Python and the SigOpt CLI.
Copy and paste the code below to a file named sigopt_bo_experiment.py
:
Copy import tensorflow as tf
import sigopt
import os
os . environ [ "SIGOPT_API_TOKEN" ] = "YOUR_API_TOKEN"
os . environ [ "SIGOPT_PROJECT" ] = "run-examples"
class KerasNNModel :
def __init__ ( self , hidden_layer_size , activation_fn ):
model = tf . keras . Sequential (
[
tf.keras.layers. Flatten (input_shape = ( 28 , 28 )),
tf.keras.layers. Dense (hidden_layer_size, activation = activation_fn),
tf.keras.layers. Dense ( 10 ),
]
)
self . model = model
def get_keras_nn_model ( self ):
return self . model
def train_model ( self , train_images , train_labels , optimizer_type , metrics_list , num_epochs ):
self . model . compile (
optimizer = optimizer_type,
loss = tf.keras.losses. SparseCategoricalCrossentropy (from_logits = True ),
metrics = metrics_list,
)
self . model . fit (train_images, train_labels, epochs = num_epochs)
def evaluate_model ( self , test_images , test_labels ):
metrics_dict = self . model . evaluate (test_images, test_labels, verbose = 2 , return_dict = True )
return metrics_dict
def load_data_train_model ():
sigopt . log_dataset (name = "mnist" )
(train_images , train_labels) , (test_images , test_labels) = tf . keras . datasets . mnist . load_data ()
# set model training, architecture parameters and hyperparameters
sigopt . params . num_epochs = 2
# create the model
keras_nn_model = KerasNNModel (
hidden_layer_size = sigopt.params.hidden_layer_size, activation_fn = sigopt.params.activation_function
)
sigopt . log_model ( "Keras NN Model with 1 Hidden layer" )
# train the model
keras_nn_model . train_model (train_images, train_labels, "adam" , [ "accuracy" ], sigopt.params.num_epochs)
sigopt . log_metadata ( "sgd optimizer" , "adam" )
metrics_dict = keras_nn_model . evaluate_model (test_images, test_labels)
# log performance metrics
sigopt . log_metric ( "holdout_accuracy" , metrics_dict[ "accuracy" ])
if __name__ == "__main__" :
load_data_train_model ()
Copy and paste the yml file below to a file named experiment.yml
:
Copy name : Single metric optimization
type : offline
parameters :
- name : hidden_layer_size
type : int
bounds :
min : 32
max : 512
- name : activation_function
type : categorical
categorical_values :
- relu
- tanh
metrics :
- name : holdout_accuracy
strategy : optimize
objective : maximize
parallel_bandwidth : 1
budget : 30
Execute the CLI command below to start your AI Experiment:
Copy $ sigopt optimize - e experiment . yml python sigopt_bo_experiment . py
And that’s it! Navigate to the SigOpt web application to keep an eye on your AI Experiment and draw insights from your results!
Executing a Python File without the SigOpt CLI
Copy and paste the code below to a file named sigopt_bo_experiment_nocli.py
:
Copy import tensorflow as tf
import sigopt
import os
os . environ [ "SIGOPT_API_TOKEN" ] = "YOUR_API_TOKEN"
os . environ [ "SIGOPT_PROJECT" ] = "run-examples"
class KerasNNModel :
def __init__ ( self , hidden_layer_size , activation_fn ):
model = tf . keras . Sequential (
[
tf.keras.layers. Flatten (input_shape = ( 28 , 28 )),
tf.keras.layers. Dense (hidden_layer_size, activation = activation_fn),
tf.keras.layers. Dense ( 10 ),
]
)
self . model = model
def get_keras_nn_model ( self ):
return self . model
def train_model ( self , train_images , train_labels , optimizer_type , metrics_list , num_epochs ):
self . model . compile (
optimizer = optimizer_type,
loss = tf.keras.losses. SparseCategoricalCrossentropy (from_logits = True ),
metrics = metrics_list,
)
self . model . fit (train_images, train_labels, epochs = num_epochs)
def evaluate_model ( self , test_images , test_labels ):
metrics_dict = self . model . evaluate (test_images, test_labels, verbose = 2 , return_dict = True )
return metrics_dict
def load_data_train_model ( run ):
run . log_dataset (name = "mnist" )
(train_images , train_labels) , (test_images , test_labels) = tf . keras . datasets . mnist . load_data ()
# set model training, architecture parameters and hyperparameters
run . params . num_epochs = 2
# create the model
keras_nn_model = KerasNNModel (
hidden_layer_size = run.params.hidden_layer_size, activation_fn = run.params.activation_function
)
run . log_model ( "Keras NN Model with 1 Hidden layer" )
# train the model
keras_nn_model . train_model (train_images, train_labels, "adam" , [ "accuracy" ], run.params.num_epochs)
run . log_metadata ( "sgd optimizer" , "adam" )
metrics_dict = keras_nn_model . evaluate_model (test_images, test_labels)
# log performance metrics
run . log_metric ( "holdout_accuracy" , metrics_dict[ "accuracy" ])
if __name__ == "__main__" :
experiment = sigopt . create_experiment (
name = "Single metric optimization" ,
type = "offline" ,
parameters = [
dict (name = "hidden_layer_size" , type = "int" , bounds = dict (min = 32 , max = 512 )),
dict (name = "activation_function" , type = "categorical" , categorical_values = [ "relu" , "tanh" ]),
],
metrics = [ dict (name = "holdout_accuracy" , strategy = "optimize" , objective = "maximize" )],
parallel_bandwidth = 1 ,
budget = 30 ,
)
for run in experiment . loop ():
with run :
load_data_train_model (run = run)
Execute the CLI command below to start your AI Experiment:
Copy $ python sigopt_bo_experiment_nocli . py
And that’s it! Navigate to the SigOpt web application to keep an eye on your AI Experiment and draw insights from your results!
Last updated 5 months ago